Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Virol ; 96(14): e0047722, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1909579

ABSTRACT

The mechanisms of colostrum-mediated virus transmission are difficult to elucidate because of the absence of experimental animal models and the difficulties in tissue sample collection from mothers in the peripartum period. Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that has catastrophic impacts on the global pig industry. PEDV primarily infects neonatal piglets by multiple routes, especially 1- to 2-day-old neonatal piglets. Here, our epidemiological investigation and animal challenge experiments revealed that PEDV could be vertically transmitted from sows to neonatal piglets via colostrum, and CD3+ T cells in the colostrum play an important role in this process. The results showed that PEDV colonizing the intestinal epithelial cells (IECs) of orally immunized infected sows could be transferred to CD3+ T cells located just beneath the IECs. Next, PEDV-carrying CD3+ T cells, with the expression of integrin α4ß7 and CCR10, migrate from the intestine to the mammary gland through blood circulation. Arriving in the mammary gland, PEDV-carrying CD3+ T cells could be transported across mammary epithelial cells (MECs) into the lumen (colostrum), as illustrated by an autotransfusion assay and an MECs/T coculture system. The PEDV-carrying CD3+ T cells in colostrum could be interspersed between IECs of neonatal piglets, causing intestinal infection via cell-to-cell contact. Our study demonstrates for the first time that colostrum-derived CD3+ T cells comprise a potential route for the vertical transmission of PEDV. IMPORTANCE The colostrum represents an important infection route for many viruses. Here, we demonstrate the vertical transmission of porcine epidemic diarrhea virus (PEDV) from sows to neonatal piglets via colostrum. PEDV colonizing the intestinal epithelial cells could transfer the virus to CD3+ T cells located in the sow intestine. The PEDV-carrying CD3+ T cells in the sow intestine, with the expression of integrin α4ß7 and CCR10, arrive at the mammary gland through blood circulation and are transported across mammary epithelial cells into the lumen, finally leading to intestinal infection via cell-to-cell contact in neonatal piglets. Our study not only demonstrates an alternative route of PEDV infection but also provides an animal model of vertical transmission of human infectious disease.


Subject(s)
Colostrum , Coronavirus Infections , Infectious Disease Transmission, Vertical , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Animals, Newborn , Colostrum/virology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Female , Infectious Disease Transmission, Vertical/veterinary , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/transmission , Swine Diseases/virology , T-Lymphocytes/virology
2.
Signal Transduct Target Ther ; 7(1): 61, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1758178

ABSTRACT

Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Protection , SARS-CoV-2/drug effects , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Anal Canal/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Humans , Immunogenicity, Vaccine , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pharynx/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects
3.
JCI Insight ; 7(7)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1714503

ABSTRACT

SARS-CoV-2 vaccines pose as the most effective approach for mitigating the COVID-19 pandemic. High-degree efficacy of SARS-CoV-2 vaccines in clinical trials indicates that vaccination invariably induces an adaptive immune response. However, the emergence of breakthrough infections in vaccinated individuals suggests that the breadth and magnitude of vaccine-induced adaptive immune response may vary. We assessed vaccine-induced SARS-CoV-2 T cell response in 21 vaccinated individuals and found that SARS-CoV-2-specific T cells, which were mainly CD4+ T cells, were invariably detected in all individuals but the response was varied. We then investigated differentiation states and cytokine profiles to identify immune features associated with superior recall function and longevity. We identified SARS-CoV-2-specific CD4+ T cells were polyfunctional and produced high levels of IL-2, which could be associated with superior longevity. Based on the breadth and magnitude of vaccine-induced SARS-CoV-2 response, we identified 2 distinct response groups: individuals with high abundance versus low abundance of SARS-CoV-2-specific T cells. The fractions of TNF-α- and IL-2-producing SARS-CoV-2 T cells were the main determinants distinguishing high versus low responders. Last, we identified that the majority of vaccine-induced SARS-CoV-2 T cells were reactive against non-mutated regions of mutant S-protein, suggesting that vaccine-induced SARS-CoV-2 T cells could provide continued protection against emerging variants of concern.


Subject(s)
COVID-19 Vaccines , COVID-19 , T-Lymphocytes , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Interleukin-2 , Pandemics , SARS-CoV-2 , T-Lymphocytes/virology
4.
Nat Immunol ; 23(2): 186-193, 2022 02.
Article in English | MEDLINE | ID: covidwho-1671600

ABSTRACT

The adaptive immune response is a major determinant of the clinical outcome after SARS-CoV-2 infection and underpins vaccine efficacy. T cell responses develop early and correlate with protection but are relatively impaired in severe disease and are associated with intense activation and lymphopenia. A subset of T cells primed against seasonal coronaviruses cross reacts with SARS-CoV-2 and may contribute to clinical protection, particularly in early life. T cell memory encompasses broad recognition of viral proteins, estimated at around 30 epitopes within each individual, and seems to be well sustained so far. This breadth of recognition can limit the impact of individual viral mutations and is likely to underpin protection against severe disease from viral variants, including Omicron. Current COVID-19 vaccines elicit robust T cell responses that likely contribute to remarkable protection against hospitalization or death, and novel or heterologous regimens offer the potential to further enhance cellular responses. T cell immunity plays a central role in the control of SARS-CoV-2 and its importance may have been relatively underestimated thus far.


Subject(s)
COVID-19/immunology , Immunity, Cellular , Lymphocyte Activation , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Animals , Antigens, Viral/immunology , COVID-19/metabolism , COVID-19/virology , Cross Reactions , Host-Pathogen Interactions , Humans , Immunologic Memory , Phenotype , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , T-Lymphocytes/metabolism , T-Lymphocytes/virology
5.
Nat Immunol ; 23(2): 210-216, 2022 02.
Article in English | MEDLINE | ID: covidwho-1625648

ABSTRACT

A proportion of patients surviving acute coronavirus disease 2019 (COVID-19) infection develop post-acute COVID syndrome (long COVID (LC)) lasting longer than 12 weeks. Here, we studied individuals with LC compared to age- and gender-matched recovered individuals without LC, unexposed donors and individuals infected with other coronaviruses. Patients with LC had highly activated innate immune cells, lacked naive T and B cells and showed elevated expression of type I IFN (IFN-ß) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection. Using a log-linear classification model, we defined an optimal set of analytes that had the strongest association with LC among the 28 analytes measured. Combinations of the inflammatory mediators IFN-ß, PTX3, IFN-γ, IFN-λ2/3 and IL-6 associated with LC with 78.5-81.6% accuracy. This work defines immunological parameters associated with LC and suggests future opportunities for prevention and treatment.


Subject(s)
B-Lymphocytes/immunology , COVID-19/complications , Immunity, Innate , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Cytokines/blood , Female , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Male , Middle Aged , Prognosis , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Post-Acute COVID-19 Syndrome
6.
Nat Commun ; 13(1): 153, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616980

ABSTRACT

Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , Convalescence , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Flow Cytometry/methods , Follow-Up Studies , Humans , Immunoglobulin G/immunology , Interleukin-2/immunology , Interleukin-2/metabolism , Kinetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Vaccination/methods
8.
Cells ; 11(1)2021 12 27.
Article in English | MEDLINE | ID: covidwho-1580992

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by the SARS-CoV-2 coronavirus. T cells play an essential role in the body's fighting against the virus invasion, and the T cell receptor (TCR) is crucial in T cell-mediated virus recognition and clearance. However, little has been known about the features of T cell response in convalescent COVID-19 patients. In this study, using 5'RACE technology and PacBio sequencing, we analyzed the TCR repertoire of COVID-19 patients after recovery for 2 weeks and 6 months compared with the healthy donors. The TCR clustering and CDR3 annotation were exploited to discover groups of patient-specific TCR clonotypes with potential SARS-CoV-2 antigen specificities. We first identified CD4+ and CD8+ T cell clones with certain clonal expansion after infection, and then observed the preferential recombination usage of V(D) J gene segments in CD4+ and CD8+ T cells of COVID-19 patients with different convalescent stages. More important, the TRBV6-5-TRBD2-TRBJ2-7 combination with high frequency was shared between CD4+ T and CD8+ T cells of different COVID-19 patients. Finally, we found the dominant characteristic motifs of the CDR3 sequence between recovered COVID-19 and healthy control. Our study provides novel insights on TCR in COVID-19 with different convalescent phases, contributing to our understanding of the immune response induced by SARS-CoV-2.


Subject(s)
COVID-19/immunology , High-Throughput Nucleotide Sequencing/methods , Immunity/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Aged , Amino Acid Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Convalescence , Female , Humans , Male , Middle Aged , Patient Acuity , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , SARS-CoV-2/physiology , T-Lymphocytes/metabolism , T-Lymphocytes/virology
9.
Front Immunol ; 12: 733539, 2021.
Article in English | MEDLINE | ID: covidwho-1572288

ABSTRACT

The response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls. We observed significant increase in antibodies with neutralizing amplitude in asymptomatic contacts along with cytokines such as Eotaxin, granulocyte-colony stimulating factor (G-CSF), interleukin 7 (IL-7), migration inhibitory factor (MIF), and macrophage inflammatory protein-1α (MIP-1α). Upon single-cell RNA (scRNA) sequencing, we explored the dynamics of the adaptive immune response in few representative asymptomatic close contacts and COVID-19-infected patients. We reported direct asymptomatic contacts to have decreased CD4+ naive T cells with concomitant increase in CD4+ memory and CD8+ Temra cells along with expanded clonotypes compared to infected patients. Noticeable proportions of class switched memory B cells were also observed in them. Overall, these findings gave an insight into the nature of protection in asymptomatic contacts.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Genomics/methods , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/genetics , Adult , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Humans , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Memory B Cells/virology , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Young Adult
10.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
11.
J Allergy Clin Immunol ; 149(3): 912-922, 2022 03.
Article in English | MEDLINE | ID: covidwho-1536619

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is an acute, febrile, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated syndrome, often with cardiohemodynamic dysfunction. Insight into mechanism of disease is still incomplete. OBJECTIVE: Our objective was to analyze immunologic features of MIS-C patients compared to febrile controls (FC). METHODS: MIS-C patients were defined by narrow criteria, including having evidence of cardiohemodynamic involvement and no macrophage activation syndrome. Samples were collected from 8 completely treatment-naive patients with MIS-C (SARS-CoV-2 serology positive), 3 patients with unclassified MIS-C-like disease (serology negative), 14 FC, and 5 MIS-C recovery (RCV). Three healthy controls (HCs) were used for comparisons of normal range. Using spectral flow cytometry, we assessed 36 parameters in antigen-presenting cells (APCs) and 29 in T cells. We used biaxial analysis and uniform manifold approximation and projection (UMAP). RESULTS: Significant elevations in cytokines including CXCL9, M-CSF, and IL-27 were found in MIS-C compared to FC. Classic monocytes and type 2 dendritic cells (DCs) were downregulated (decreased CD86, HLA-DR) versus HCs; however, type 1 DCs (CD11c+CD141+CLEC9A+) were highly activated in MIS-C patients versus FC, expressing higher levels of CD86, CD275, and atypical conventional DC markers such as CD64, CD115, and CX3CR1. CD169 and CD38 were upregulated in multiple monocyte subtypes. CD56dim/CD57-/KLRGhi/CD161+/CD38- natural killer (NK) cells were a unique subset in MIS-C versus FC without macrophage activation syndrome. CONCLUSION: Orchestrated by complex cytokine signaling, type 1 DC activation and NK dysregulation are key features in the pathophysiology of MIS-C. NK cell findings may suggest a relationship with macrophage activation syndrome, while type 1 DC upregulation implies a role for antigen cross-presentation.


Subject(s)
COVID-19/complications , Dendritic Cells/immunology , Dendritic Cells/virology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/virology , ADP-ribosyl Cyclase 1/blood , Adolescent , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Child , Child, Preschool , Cross-Priming , Cytokines/blood , Dendritic Cells/classification , Female , HLA-DR Antigens/blood , Humans , Immunophenotyping , Interferon-gamma/blood , Interleukins/blood , Killer Cells, Natural/immunology , Male , Membrane Glycoproteins/blood , Models, Immunological , Monocytes/immunology , Sialic Acid Binding Ig-like Lectin 1/blood , T-Lymphocytes/immunology , T-Lymphocytes/virology , Up-Regulation
13.
Nat Cancer ; 2: 1321-1337, 2021 12.
Article in English | MEDLINE | ID: covidwho-1510627

ABSTRACT

CAPTURE (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable neutralizing antibody titers (NAbT) against SARS-CoV-2 variants of concern (VOCs) vs wildtype (WT). Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT vs solid cancers against both WT and VOCs. In comparison with individuals without cancer, patients with haematological, but not solid, malignancies had reduced NAb responses. Seroconversion showed poor concordance with NAbT against VOCs. Prior SARS-CoV-2 infection boosted NAb response including against VOCs, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T-cell responses were detected in 80% of patients, and were comparable between vaccines or cancer types. Our results have implications for the management of cancer patients during the ongoing COVID-19 pandemic.


Subject(s)
Adaptive Immunity/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Carcinoma, Renal Cell/complications , Kidney Neoplasms/complications , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/immunology , Female , Humans , Immunogenicity, Vaccine/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Vaccination/methods
14.
Viruses ; 13(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1485180

ABSTRACT

Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.


Subject(s)
HIV Infections/metabolism , Hyaluronan Receptors/metabolism , Leukosialin/metabolism , Membrane Glycoproteins/metabolism , Cell Membrane/metabolism , HIV Infections/genetics , HIV-1/genetics , HIV-1/metabolism , HIV-1/pathogenicity , Host-Pathogen Interactions , Humans , Hyaluronan Receptors/genetics , Leukosialin/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Virion/metabolism , Virus Assembly , Virus Attachment , gag Gene Products, Human Immunodeficiency Virus/metabolism
15.
Sci Immunol ; 6(66): eabm3131, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1483985

ABSTRACT

SARS-CoV-2 has caused morbidity and mortality across the globe. As the virus spreads, new variants are arising that show enhanced capacity to bypass preexisting immunity. To understand the memory response to SARS-CoV-2, here, we monitored SARS-CoV-2­specific T and B cells in a longitudinal study of infected and recovered golden hamsters (Mesocricetus auratus). We demonstrated that engagement of the innate immune system after SARS-CoV-2 infection was delayed but was followed by a pronounced adaptive response. Moreover, T cell adoptive transfer conferred a reduction in virus levels and rapid induction of SARS-CoV-2­specific B cells, demonstrating that both lymphocyte populations contributed to the overall response. Reinfection of recovered animals with a SARS-CoV-2 variant of concern showed that SARS-CoV-2­specific T and B cells could effectively control the infection that associated with the rapid induction of neutralizing antibodies but failed to block transmission to both naïve and seroconverted animals. These data suggest that the adaptive immune response to SARS-CoV-2 is sufficient to provide protection to the host, independent of the emergence of variants.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Immunologic Memory/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adaptive Immunity/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/virology , Cricetinae , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Mesocricetus , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Virus Replication/genetics
20.
Infect Genet Evol ; 95: 105075, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401708

ABSTRACT

T-cell-mediated immunity to SARS-CoV-2-derived peptides in individuals unexposed to SARS-CoV-2 has been previously reported. This pre-existing immunity was suggested to largely derive from prior exposure to 'common cold' endemic human coronaviruses (HCoVs). To test this, we characterised the sequence homology of SARS-CoV-2-derived T-cell epitopes reported in the literature across the full proteome of the Coronaviridae family. 54.8% of these epitopes had no homology to any of the HCoVs. Further, the proportion of SARS-CoV-2-derived epitopes with any level of sequence homology to the proteins encoded by any of the coronaviruses tested is well-predicted by their alignment-free phylogenetic distance to SARS-CoV-2 (Pearson's r = -0.958). No coronavirus in our dataset showed a significant excess of T-cell epitope homology relative to the proportion of expected random matches, given their genetic similarity to SARS-CoV-2. Our findings suggest that prior exposure to human or animal-associated coronaviruses cannot completely explain the T-cell repertoire in unexposed individuals that recognise SARS-CoV-2 cross-reactive epitopes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronaviridae/immunology , Disease Resistance , Immunologic Memory , SARS-CoV-2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Asymptomatic Diseases , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Chiroptera/virology , Coronaviridae/classification , Coronaviridae/genetics , Coronaviridae/pathogenicity , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Eutheria/virology , Humans , Immunity, Cellular , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL